2008年7月28日星期一

电子眼摄录,号牌识别原理

1.引言

车牌识别技术(Vehicle License Plate Recognition,VLPR)是计算机视觉和模式识别技术在现代智能交通系统中的一项重要研究课题,是实现交通管理智能化(Intelligent Transportation Systems,ITS)的重要环节。车牌自动识别系统是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统,它利用每一个汽车都有唯一的 车牌号码,通过摄像机所拍摄的车辆图像进行车牌号码的识别。在不影响汽车运行状态的情况下,计算机自动完成车牌的识别,可降低交通管理工作的复杂度。车牌 自动识别技术在车辆过路、过桥全自动不停车收费,交通流量控制指标的测量,车辆自动识别,高速公路上的事故自动测报,不停车检查,车辆定位,汽车防盗,稽 查和追踪车辆违规、违法行为,维护交通安全和城市治安,防止交通堵塞,提高收费路桥的服务速度,缓解交通紧张状况等方面有重要作用,因此VLPR技术研究 有重要的现实应用意义。VLPR系统拥有广阔的应用前景,由于装配一套全新的车辆探测器的硬件系统投资巨大,急需用纯软件实现的车牌自动识别系统来最大限 度的减少费用,在这样的背景下我们成功设计实现了一个基于改进BP神经网络模式的车牌自动识别系统。以下对其中的某些关键技术点作简要的讨论。



2 车牌字符识别相关技术简介

2.1 图像的灰度化

汽车图像样本目前大都是通过摄像机、数码相机等设备拍摄获取的,因而预处理前的图像都是彩色图像。彩色图像包含着大量的颜色信息,不但在存储上开销很大, 而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。由彩色转换为灰度的过程叫做灰度化处 理。灰度图像就是只有强度信息而没有颜色信息的图像,存储灰度图像只需要一个数据矩阵,矩阵每个元素表示对应位置像素的灰度值。彩色图像的像素色为 RGB(R,G,B),灰度图像的像素色为RGB(r,r,r),R,G,B可由彩色图像的颜色分解获得。而R,G,B的取值范围是0~255,所以灰度 的级别只有256级。灰度化的处理方法主要有如下三种:分别为最大值法、平均值法和加权平均值法。

2.2 图像的灰度拉伸

由于车辆牌照识别系统是全天候的,若没有理想的补充光照明,自然光照度的昼夜变化会引起牌照图像的对比度严重不足,使图像中牌照字符分辨不清,甚至根本无 法定位和分割,更无法识别。采用图像灰度拉伸的方法可有效地增强图像对比度,增强后的图像中字符清晰、区域分明,便于图像二值化和字符分割处理。

2.3 图像的二值化

二值图像是指整幅图像画面内仅黑、白二值的图像。在数字图像处理中,二值图像占有非常重要的地位。在实际的车牌处理系统中,进行图像二值变换的关键是要确 定合适的阀值,使得字符与背景能够分割开来,二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。车牌识别系统要 求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大地提高处理效率。二值化的阀值选取有很多方法,主要分为3类:全局阀值法、局部阀值法和 动态阀值法。全局阀值二值化方法是根据图像的直方图或灰度的空间分布确定一个阀值,并根据该阀值实现灰度图像到二值化图像的转化。全局阀值方法的优点在于 算法简单,对于目标和背景明显分离、直方图分布呈双峰的图像效果良好,但对输入图像量化噪声或不均匀光照等情况抵抗能力差,应用受到极大限制。局部阀值法 则是由象素灰度值和象素周围点局部灰度特性来确定象素的阀值的,Bernsen算法是典型的局部阀值方法,非均匀光照条件等情况虽然影响整体图像的灰度分 布却不影响局部的图像性质,局部阀值法也存在缺点和问题,如实现速度慢、不能保证字符笔划连通性、以及容易出现伪影现象等。动态阀值法的阀值选择不仅取决 于该象素灰度值以及它周围象素的灰度值,而且还和该象素的坐标位置有关,由于充分考虑了每个像素邻域的特征,能更好的突出背景和目标的边界,使相距很近的 两条线不会产生粘连现象。

2.4 图像的梯度锐化

由于需要处理的图像由拍摄而来,所以在很多情况下字符模糊,对识别造成了一定的困难,所以要对图像进行锐化处理使模糊的图像变的清晰,图像锐化的实质就是 增强图像的边缘或轮廓,其锐化后的结果通过微分而使图像边缘突出、清晰。图像锐化的方法有两种:梯度锐化法和高通滤波法。其中梯度锐化法比较常用,其中求 梯度的两种差分算法分别为水平垂直差分法和交叉差分计算法,此外还可采用Roberts、Prewitt和Sobel梯度算子。Roberts特点是边缘 定位准确,但对噪声敏感;Prewitt特点是平均、微分对噪声有抑制作用。事实证明,梯度锐化具有一定的去噪能力,但会对字符的边缘有所损伤。

2.5 图像的去噪

图像可能在拍摄或者传输过程中夹带了噪声,去噪声是图像处理中常用的手法。通常去噪用滤波的方法,比如中值滤波、均值滤波。

2.6 图像的倾斜矫正

由于拍摄时镜头与牌照的角度、车辆的运动及路面的状况等因素的影响,例如车牌在捕捉图像中的位置不固定,捕捉图像时车头或者镜头发生摆动以及车牌本身就挂 歪了或路况较差,都可能使拍摄到的车牌图像有一定的倾斜度,为了正确识别需要进行倾斜度校正,否则将无法进行单个字符的正确分割,字符识别的误差率就会上 升。但是若以某个固定的经验值对所有牌照统一进行旋转处理,又会使原本正常的牌照倾斜,导致新的错误。因此有必要针对特定的牌照图像提取其倾斜角度,再加 以相应的旋转处理。如何从牌照中自动提取其倾斜度是预处理过程中的一个难点,一般使用Hough变换检测图像中的直线来对图像的倾斜进行相应的矫正。

2.7 车牌边框和柳钉的去除

在实际处理中,面对要识别的牌照字符背景非常复杂,存在较大的干扰、噪声。当车牌的二值图像统一为黑底白字并经过对图像梯度锐化和去除噪声后,还会有汽车 保险杠与牌照四条边框的残缺图像以及牌照上两个铆钉干扰的一个区域。借助先验知识,可以采取图像处理方法从上述复杂背景中去除干扰。将车牌图像进行二值化 后,图像仅黑、白二值。白色像素点(灰度值255)取1,黑色像素点(灰度值0)取0,这里采用的是白底黑字模式。车牌图像中上下边框和铆钉的去除是很重 要的,没有去除边框线和铆钉的车牌图像,经常出现铆钉和字符及边框线粘连的现象,给后续车牌字符的分割造成很大的困难。在车牌边框线的内侧,通常有四个铆 钉,他们不同程度地与第2个字符或第6个字符粘连,如果不去除铆钉,将给第2和第6在字符的识别造成困难。

2.8 车牌字符分割

经过上面一系列预处理后,得到的是一条上下边缘紧贴字符的水平二值图像,其中,车牌的背景像素为白色,用1表示;车牌的字符像素为黑色,用0表示。在识别 时系统只能根据每个字符的特征来进行判断,为了最终能准确识别牌照上的汉字、英文字母及数字,必须将单个字符从矫正的牌照中逐个提取分离出来。

2.9 车牌字符特征提取

图像经过一系列变换后,原来大小不同、分布不规律的各个字符变成了一个个大小相同,排列整齐的字符。紧接着就要从被分割归一处理完毕的字符中,提取最能体 现这个字符特点的特征向量。将提取出训练样本中的特征向量输入到BP神经网络对网络进行训练后,就可以对字符进行识别。

2.10 字符识别方法

由于本系统字符识别相对比较复杂,涉及知识面较宽,有必要对字符识别方法略作讨论。

(1) 模板匹配车牌字符识别

中 国车牌的字符模板分为汉字、英文字母和数字模板,由统计方法构造并保存到数据库中。模板匹配是将字符模板和标准化了的车牌字符进行匹配来识别字符。优点是 对字符图像的缺损、污迹干扰适应力强,缺点是只适用于尺寸固定,车牌水平放置的情况,对字符的旋转、缩放、变形容忍度低。

(2) 特征匹配车牌字符识别

车牌识别的方法中,可利用的字符特征很多,大致可以分为结构特征、象素分布特征及其他特征:

l 结构特征。结构特征充分利用了字符本身的特点,由于车牌字符通常都是较规范的印刷体,因此可以较容易地从字符图像上得到它的字符笔画信息,并可根据这些信 息来判别字符。例如,汉字的笔画可以简化为4类:横、竖、左斜和右斜。根据长度不同又可分为长横、短横、长竖和短竖等。本系统将汉字分块,并提取每一块的 笔画特征,就可得到一个关于笔画的矩阵,以此作为特征来识别汉字。而对于数字和字母,它们的个数很有限而且是连通的,可以判断它们弧的有无和位置,并作为 一个很重要的特征来识别。

l 象素分布特征。象素分布特征的提取方法很多,常见的有水平、垂直投影的特征,微结构特征和周边特征等。水平、垂直投影的特征是计算字符图像在水平和垂直方 向上象素值的多少,以此作为特征。微结构法将图像分为几个小块,统计每个小块的象素分布。周边特征则计算从边界到字符的距离。优点是排除了尺寸、方向变化 带来的干扰,缺点是当字符出现笔划融合、断裂、部分缺失时不适用。

l 神经网络方法。就是使用人工神经网络方法实现模式识别。可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸 变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,这正是识别存在较大噪声的印刷 体字符的识别所需要的。在车牌识别中数字和字符并不多,所以用神经网络方法实现不必考虑其识别类不够多的问题

没有评论:

发表评论

欢迎访问、交流!对本博客有何建议,请
来信告知!
本博内容来源于网络,如有不当或侵犯权益,请来信告知,将及时撤除!
如引用博客内容、论文,请注明原作者!

Google一下本博客

  • 《Getting Things Done》读书笔记 - 本文来自 inertial 原创投稿。 我第一次听说《Getting Things Done》这本书的时候误以为它和世面上的那些成功学书籍没什么区别,后来在不少书中看到了这个名字,也看见了很多人的推荐,由此产生了很大的兴趣。上个月正好有不少空闲,就抽时间把这本书读完了。 本来打算读英文原版,但是原版的生...
    5 年前
  • [原]Linux下编译使用boost库 - Boost库是一个可移植、提供源代码的C++库,作为标准库的后备,是C++标准化进程的开发引擎之一。 Boost库由C++标准委员会库工作组成员发起,其中有些内容有望成为下一代C++标准库内容。在C++社区中影响甚大,是不折不扣的“准”标准库。Boost由于其对跨平台的强调,对标准C++的强调,与...
    6 年前
  • [原]猎头、培训与咨询的价值(2)【补1】——北漂18年(93) - 【上期用手机写的,同时用语音输入转化成文字,错字较多,经好友霍师傅提醒本期重写,并增加一部分新内容】 简单谈下我对猎头、培训与咨询的看法。三样都干过,算是有些浅见。 猎头 简单的说就是人才中介。虽然在公司看来是可以直接解决现有企业问题的一个直接方法,但很多时候都不太管用。 猎头费一般是人才的一个月月...
    7 年前
  • OpenCV統計應用-Mahalanobis距離 - Mahalanobis距離是一個可以準確找出資料分布上面極端值(Outliers)的統計方法,使用線性迴歸的概念,也就是說他使用的是共變數矩陣以及該資料分布的平均數來找尋極端值的產生,而可以讓一群資料系統具有穩健性(Robust),去除不必要的雜訊訊息,這邊拿前面共變數矩陣的資料為例,並且新增了兩個點座標向量來做...
    15 年前
  • 努力推进模式识别实际产品的开发与应用 - Salu 无论是手写体识别、文档处理、人脸识别、基于内容的图片搜索、嵌入人工智能的搜索技术、虚拟网络社区、还是其它相关新科技下的信息整合领域,现在都在努力实用化。 前两年、即使现在还有很多人在抱怨说人脸的方法都不能用,但是就今年出现的和正在做的有关人脸识别实际应用的各种形式的产品可以说如雨后春笋。这是一个趋...
    16 年前