2008年7月5日星期六

国内外车辆牌照识别技术综述

1.1 国内外车辆牌照识别技术综述

从上世纪80年代,欧美等发达国家率先开始了车牌照识别方面的研究工作。由于受当时的硬件处理条件所限处理器运算速度慢,存储器容量低,车牌照识别系统的研究工作仅限于一些低速,要求较低的场合,例如停车场管理,停车交费等场合。随着人们生活水平的提高,智能交通系统研究和应用的不断深入,对车牌照识别系统的性能的要求也越来越高,早期的产品已经不能满足现今社会的需要。

随着硬件技术的不断发展,发达国家的车牌自动识别系统在实际交通系统中已取得了成功的应用。而我国在车牌自动识别系统方面的开发和应用还处在起步阶段,主要原因是识别速度这一瓶颈问题限制了应用和推广。

车牌照系统主要分为图像采集,图像处理,车牌定位,字符切分,字符识别几个部分[4][5]

Figure 1-2 Chinese VLPR model

图像采集:目前图像采集主要采用专用摄像机连接图像采集卡或者直接连接便携式笔记本进行实时图像采集,将模拟信号转换为数字信号。

图像处理:需对采集的图像进行增强、恢复、变换等处理,目的是突出车牌的主要特征,以便更好地提取车牌区域。

车 牌定位:从人眼视觉的角度出发,并根据车牌的字符目标区域的特点,在二值化图像的基础上提取相应的特征。车牌定位是车辆牌照自动识别系统中的关键和难点, 实际图像中的噪声、复杂的背景等干扰都会使定位十分困难。车辆牌照的分割是一个寻找最符合牌照特征区域的过程。从本质上说,就是一个在参量空间寻找最优定 位参量的问题,需要用最优化方法予以实现。

字符分割:是从获得的牌照区域分割出单个字符(包括汉字、字母和数字)以便于进行字符识别的过程。考虑到车牌上的字符一般除了一个汉字外其他的都是字母和数字,即在理想状态下每个字符是全连通的且互不相连,因此可以使用特定的方法进行字符切分。

字符识别:是使分割得到的字符进一步转化为文本并存入数据库或者直接显示出来的过程。

没有评论:

发表评论

欢迎访问、交流!对本博客有何建议,请
来信告知!
本博内容来源于网络,如有不当或侵犯权益,请来信告知,将及时撤除!
如引用博客内容、论文,请注明原作者!

Google一下本博客

  • 《Getting Things Done》读书笔记 - 本文来自 inertial 原创投稿。 我第一次听说《Getting Things Done》这本书的时候误以为它和世面上的那些成功学书籍没什么区别,后来在不少书中看到了这个名字,也看见了很多人的推荐,由此产生了很大的兴趣。上个月正好有不少空闲,就抽时间把这本书读完了。 本来打算读英文原版,但是原版的生...
    5 年前
  • [原]Linux下编译使用boost库 - Boost库是一个可移植、提供源代码的C++库,作为标准库的后备,是C++标准化进程的开发引擎之一。 Boost库由C++标准委员会库工作组成员发起,其中有些内容有望成为下一代C++标准库内容。在C++社区中影响甚大,是不折不扣的“准”标准库。Boost由于其对跨平台的强调,对标准C++的强调,与...
    6 年前
  • OpenCV統計應用-Mahalanobis距離 - Mahalanobis距離是一個可以準確找出資料分布上面極端值(Outliers)的統計方法,使用線性迴歸的概念,也就是說他使用的是共變數矩陣以及該資料分布的平均數來找尋極端值的產生,而可以讓一群資料系統具有穩健性(Robust),去除不必要的雜訊訊息,這邊拿前面共變數矩陣的資料為例,並且新增了兩個點座標向量來做...
    15 年前
  • 努力推进模式识别实际产品的开发与应用 - Salu 无论是手写体识别、文档处理、人脸识别、基于内容的图片搜索、嵌入人工智能的搜索技术、虚拟网络社区、还是其它相关新科技下的信息整合领域,现在都在努力实用化。 前两年、即使现在还有很多人在抱怨说人脸的方法都不能用,但是就今年出现的和正在做的有关人脸识别实际应用的各种形式的产品可以说如雨后春笋。这是一个趋...
    16 年前