1.1 国内外车辆牌照识别技术综述
从上世纪80年代,欧美等发达国家率先开始了车牌照识别方面的研究工作。由于受当时的硬件处理条件所限—处理器运算速度慢,存储器容量低,车牌照识别系统的研究工作仅限于一些低速,要求较低的场合,例如停车场管理,停车交费等场合。随着人们生活水平的提高,智能交通系统研究和应用的不断深入,对车牌照识别系统的性能的要求也越来越高,早期的产品已经不能满足现今社会的需要。
随着硬件技术的不断发展,发达国家的车牌自动识别系统在实际交通系统中已取得了成功的应用。而我国在车牌自动识别系统方面的开发和应用还处在起步阶段,主要原因是识别速度这一瓶颈问题限制了应用和推广。
车牌照系统主要分为图像采集,图像处理,车牌定位,字符切分,字符识别几个部分[4][5]
Figure 1-2 Chinese VLPR model
图像采集:目前图像采集主要采用专用摄像机连接图像采集卡或者直接连接便携式笔记本进行实时图像采集,将模拟信号转换为数字信号。
图像处理:需对采集的图像进行增强、恢复、变换等处理,目的是突出车牌的主要特征,以便更好地提取车牌区域。
车 牌定位:从人眼视觉的角度出发,并根据车牌的字符目标区域的特点,在二值化图像的基础上提取相应的特征。车牌定位是车辆牌照自动识别系统中的关键和难点, 实际图像中的噪声、复杂的背景等干扰都会使定位十分困难。车辆牌照的分割是一个寻找最符合牌照特征区域的过程。从本质上说,就是一个在参量空间寻找最优定 位参量的问题,需要用最优化方法予以实现。
字符分割:是从获得的牌照区域分割出单个字符(包括汉字、字母和数字)以便于进行字符识别的过程。考虑到车牌上的字符一般除了一个汉字外其他的都是字母和数字,即在理想状态下每个字符是全连通的且互不相连,因此可以使用特定的方法进行字符切分。
字符识别:是使分割得到的字符进一步转化为文本并存入数据库或者直接显示出来的过程。
没有评论:
发表评论