2009年2月4日星期三

OpenCV 关于adaboost的一些说明 [转贴]

上学期拿出一部分时间来做adaboost,做的时候做了一些笔记。论坛上也有一些正在读程序研究算法的人。我就把这份粗糙的笔记拿出来与大家分享一下吧。肯定有错误的地方,也有不妥当的地方,大家不要太相信我

还有这个地方不能贴公式,不能贴图片,还有我很懒,就挑了几幅重要的贴了,其他的大家去看文章吧

排版不好看,也许写得也不明白,大家多包涵,希望大家可以完善这个文档。让后来者少走些弯路。

不用发论坛消息问我,发在这里让更多人看见,更多人解答,然后也可以让更多的人知道,更好些

第一部分:算法的产生

1996 年Yoav Freund在Experiments with a New Boosting Algorithm中提出了AdaBoost.M1和AdaBoost.M2两种算法.其中,AdaBoost.M1是我们通常所说的Discrete AdaBoost;而AdaBoost.M2是M1的泛化形式.该文的一个结论是:当弱分类器算法使用简单的分类方法时,boosting的效果明显地统 一地比bagging要好.当弱分类器算法使用C4.5时,boosting比bagging较好,但是没有前者的比较来得明显.

文献中记录的.M1算法
初始
1.获得一组样本(X)和它的分类(Y)和一个分类器(weaklearn).
2.赋予平均的权值分布D(i)
进入循环:T次
1. 赋予弱分类器权值D(i),使用弱分类器获得样本(X)到分类(Y)上的一个映射.(就是把某个X归到某个Y类中去)
2. 计算这个映射的误差e.e=各个归类错误的样本权值之和.如果e>1/2那么弱分类器训练失败,挑出循环,训练结束(这在二值检测中是不会发生的,而多值的情况就要看分类器够不够强健了)
3. 设B = e / ( 1 - e ).用于调整权值.因为e<1/2.因此0<1 src="http://www.shineblog.com/UploadFiles/2008-10/1015342616.jpg" alt="图片">

树节点结构:
typedef struct CvTreeCascadeNode
{
CvStageHaarClassifier* stage; // 指向该节点stage强分类器的指针

struct CvTreeCascadeNode* next; // 指向同层下一个节点的指针
struct CvTreeCascadeNode* child; // 指向子节点的指针
struct CvTreeCascadeNode* parent; // 指向父节点的指针

struct CvTreeCascadeNode* next_same_level;//最后一层叶节点之间的连接
struct CvTreeCascadeNode* child_eval; //用于连接最终分类的叶节点和根节点
int idx; //表示该节点是第几个节点
int leaf; //从来没有用到过的参数
} CvTreeCascadeNode;

这 里需要说明的是child_eval这个指针,虽说人脸检测是一个单分类问题,程序中的maxtreesplits的设置值为0,没有分叉,但是树本身是 解决多分类问题的,它有多个叶节点,也就有多个最终的分类结果。但是我们使用的时候,虽然是一个多分类的树,也可能我们只需要判断是或者不是某一类。于是 我们就用root_eval和child_eval把这个分类上的节点索引出来,更方便地使用树结构。当然,这一点在本程序中是没有体现的。

分类器结构:
每 个树节点中都包含了一个CvStageHaarClassifier强分类器,而每个CvStageHaarClassifier包含了多个 CvIntHaarClassifier弱分类器。当CvIntHaarClassifier被使用的时候,被转化为 CvCARTHaarClassifier,也就是分类树与衰减数分类器作为一个弱分类器。

typedef struct CvCARTHaarClassifier
{
CV_INT_HAAR_CLASSIFIER_FIELDS()

int count; /* 在决策树中的节点数 number of nodes in the decision tree */
int* compidx; //特征序号
CvTHaarFeature* feature; //选出的特征。数组
CvFastHaarFeature* fastfeature;

float* threshold; /* array of decision thresholds */
int* left; /* array of left-branch indices */
int* right; /* array of right-branch indices */
float* val; /* array of output values */
} CvCARTHaarClassifier;

CvCARTHaarClassifier结构中包含了弱分类器的左值右值阈值等数组,在我们的程序中CART只选用了一个特征进行分类,即退化成了stump。这里的数组里面就只存有一个元了

那么这里为什么要使用一个如此复杂的结构呢。大体来说有两个好处:
1、 方便弱分类器之间的切换,当我们不选用CART而是其他的弱分类器结构的时候,就可以调用CvIntHaarClassifier时转换成其他的指针
2、 这样方便了Haar训练的过程和Boost过程的衔接。

特征的结构:
图片

2.OpenCV的HaarTraining程序中一种常用的编程方法:
在这个程序中,函数指针是一种很常用的手法。函数指针的转换使读程序的人更难把握程序的脉络,在这里举一个最极端的例子,来说明程序中这种手法的应用。

我们在cvBoost.cpp文件中的cvCreateMTStumpClassifier函数(这是一个生成多阈值(Multi-threshold)stump分类器的函数)下看到了一个这样的调用:
findStumpThreshold_16s[stumperror](……….)
这里对应的stumperror值是2

在cvboost.cpp中我们找到了一个这样的数组
CvFindThresholdFunc findStumpThreshold_16s[4] = {
icvFindStumpThreshold_misc_16s,
icvFindStumpThreshold_gini_16s,
icvFindStumpThreshold_entropy_16s,
icvFindStumpThreshold_sq_16s
};
这个数组的类型是一个类型定义过的函数指针typedef int (*CvFindThresholdFunc)(…..)

因此这个数组中的四项就是四个指针,我们在cvCreateMTStumpClassifier中调用的也就是其中的第三项icvFindStumpThreshold_entropy_16s。

然后我们发现这个函数指针没有直接的显性的实现。那么问题出在哪里呢?
它是通过宏实现的:
程序中定义了一个这样的宏:
#define ICV_DEF_FIND_STUMP_THRESHOLD_SQ( suffix, type )
ICV_DEF_FIND_STUMP_THRESHOLD( sq_##suffix, type,
/* calculate error (sum of squares) */
/* err = sum( w * (y - left(rigt)Val)^2 ) */
curlerror = wyyl + curleft * curleft * wl - 2.0F * curleft * wyl;
currerror = (*sumwyy) - wyyl + curright * curright * wr - 2.0F * curright * wyr;
)

和一个这样的宏:
#define ICV_DEF_FIND_STUMP_THRESHOLD( suffix, type, error )
CV_BOOST_IMPL int icvFindStumpThreshold_##suffix(…..)
{
……..
}

这两个宏中,后者是函数的主体部分,而函数的定义通过前者完成。即:
ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 16s, short ),这样的形式完成。这相当于给前者的宏传递了两个参数,前者的宏将第一个参数转换成sq_16s后和第二个参数一起传到后者的宏。(##是把前后两个 string连接到一起,string是可变的两,在这里suffix就放入了16s和sq_结合成了sq_16s)
后者的宏接收到参数以后就进行了函数的定义:
CV_BOOST_IMPL int icvFindStumpThreshold_sq_16s

这样icvFindStumpThreshold_sq_16s就被定义了。这样做的好处是,12个非常相似的函数可以通过两个宏和12个宏的调用来实现,而不需要直接定义12个函数。

3.训练结果中数据的含义:
-
-
<_>6 4 12 9 -1.
//矩阵。前四个数值是矩阵四个点的位置,最后一个数值是矩阵像素和的权值
<_>6 7 12 3 3.
//矩阵。前四个数值是矩阵四个点的位置,最后一个是像素和的权值,这样两个矩阵就形成了一个Haar特征

0 //是否是倾斜的Haar特征

-0.0315119996666908 //阈值
2.0875380039215088 //小于阈值时取左值
-2.2172100543975830 //大于阈值时取右值



4. 训练过程中使用的算法
这里主要讲弱分类器算法

•矩形特征值:Value[i][j], 1≤i≤n代表所有的Haar特征,1≤j≤m代表所有的样本
•FAULT = (curlerror + currerror)表示当前分类器的错误率的最小值,初始设置:curlerror currerror= 1000000000000000000000000000000000000000000000000(反正给个暴力大的数值就对了)

图片

没有评论:

发表评论

欢迎访问、交流!对本博客有何建议,请
来信告知!
本博内容来源于网络,如有不当或侵犯权益,请来信告知,将及时撤除!
如引用博客内容、论文,请注明原作者!

Google一下本博客

  • [原]Linux下编译使用boost库 - Boost库是一个可移植、提供源代码的C++库,作为标准库的后备,是C++标准化进程的开发引擎之一。 Boost库由C++标准委员会库工作组成员发起,其中有些内容有望成为下一代C++标准库内容。在C++社区中影响甚大,是不折不扣的“准”标准库。Boost由于其对跨平台的强调,对标准C++的强调,与...
    6 年前
  • [原]猎头、培训与咨询的价值(2)【补1】——北漂18年(93) - 【上期用手机写的,同时用语音输入转化成文字,错字较多,经好友霍师傅提醒本期重写,并增加一部分新内容】 简单谈下我对猎头、培训与咨询的看法。三样都干过,算是有些浅见。 猎头 简单的说就是人才中介。虽然在公司看来是可以直接解决现有企业问题的一个直接方法,但很多时候都不太管用。 猎头费一般是人才的一个月月...
    7 年前
  • 我的时间管理道与术(三) - 本系列来自 水中颉 原创投稿。 本文续上篇《我的时间管理道与术(一):接受现实和感知时间》和《我的时间管理道与术(二):目标与计划》。 建立至上而下的检视机制 六个关注层面和检视周期 宗旨和使命、关键路径是云端;关键点和平衡点是方向指导层;项目是最接地气的现实目标层;下一步行动 是非常具体的待执行事务层...
    8 年前
  • OpenCV統計應用-Mahalanobis距離 - Mahalanobis距離是一個可以準確找出資料分布上面極端值(Outliers)的統計方法,使用線性迴歸的概念,也就是說他使用的是共變數矩陣以及該資料分布的平均數來找尋極端值的產生,而可以讓一群資料系統具有穩健性(Robust),去除不必要的雜訊訊息,這邊拿前面共變數矩陣的資料為例,並且新增了兩個點座標向量來做...
    15 年前
  • 努力推进模式识别实际产品的开发与应用 - Salu 无论是手写体识别、文档处理、人脸识别、基于内容的图片搜索、嵌入人工智能的搜索技术、虚拟网络社区、还是其它相关新科技下的信息整合领域,现在都在努力实用化。 前两年、即使现在还有很多人在抱怨说人脸的方法都不能用,但是就今年出现的和正在做的有关人脸识别实际应用的各种形式的产品可以说如雨后春笋。这是一个趋...
    16 年前